Optimization of Emissions Reduction Equipment (SCR)

Jeff Williams
SmartProcess
Business Development Manager

Where ideas become solutions.
Presenters

- Jeff Williams
- John Hayden
Agenda

- Overview
- SCR Optimization
- SCR project Case study
- Reduced Tube leaks
- Less EFORS from sootblower problems

- NOx / SO2 cap compliance
- NOx / CO / CO₂ minimization
-Opacity Reductions

- Fleet / Economic Evaluation
- Real-Time Performance
- Heat Rate Improvements
- LOI reductions

- Dispatch Response
- Ramp Rate Improvements
- Start-up guidance
History - Of SmartProcess Performance and Optimization Experience – Post 1990

- Low NOx Dispatch system for LADWP
- Power Industry first multivariable advanced fuzzy logic feedforward model based steam temperature control
- First Dynamic state space models with neural network component – NeuCOP from NeuralWare – Later Aspen
- Acquired By Emerson Named Power Industry Center of Excellence for Emerson
- Power Industry first software based intelligent sootblowing combining expert system and neural networks
- Released first browser based interface SmartEngine
- Embedded Model Based Control in Ovation® expert control system via APC.
- Developed and Beta Tested First Immunological Self-Learning system – Patent Pending
- Industry first Multivariable Model matrix with adaptation and Optimization engines
- Industry First Object based Plant performance tool
- Industry First Cyclone Boiler Optimizer
- SmartProcess powers ISA/POWID facility of the year
- Industry First Fleet wide optimization using portal technology
SmartProcess Firsts For Power

- 1st Dynamic Combustion Optimizer
- 1st Advanced Steam Temperature application
- 1st Intelligent Sootblower Optimizer
- 1st OPC based Performance Monitor (GPA)
- 1st Cyclone Optimizer
- 1st Fleet Optimizer
- 1st Open Web Enabled Economic Optimizer, Combustion Optimizer, and Intelligent Sootblower
Solutions for Improved Plant Performance

- Fleet Optimization
- Economic Optimization
- Unit Response Optimization
- Sootblower Optimization
- Steam Temp. Optimization
- SCR Optimization
- Performance Monitoring
- LoopMetrics
Complete system

- Site Assessment
- Model Design & Validation
- Project Start
- Installation of Model
- Development of Plant Integration Plan and Design of control modifications
- Advisory Mode Operation
- Execution of Plant Integration Plan
- Closed-Loop Mode Operation
- Data Collection & Conditioning
- Benchmark & Documentation

Combustion Optimizer

SP_0078
November 2005
The SCR Optimizer evaluates data to control the ideal inlet temperature and ammonia usage that will reduce NOx emissions and slip.

Results
- Improves efficiency
- Maintains optimum temp
- Extends 1st stage catalyst life

Take your SCR technology a step further.
SCR Optimization Factors

- SCR’s operate most efficiently at 600-670°F
- There are a number of layers
- Excess ammonia spray saturates the catalyst bed and escapes the reactor (slip)
- NOx inlet variability causes uneven reactions
SCR Optimization

- Control temperature via Bypass and O2 bias
- Minimize NOx variability
- Model reactor, predict flow requirement for zero slip
SmartProcess® Improves Emissions and Temperature Control at CPSG’s Brandon Shores Power Station

CHALLENGE
- Optimize temperature control
- Reduce emissions of NOx
- Improve ammonia utilization and reduce slip

SOLUTION
- SmartProcess SCR Optimization

RESULTS
- 120 hour improvement in 90% removal rate hours
- 250 tons of additional NOx reduction
- Minimize the impact of varying conditions of coal quality, cleanliness of boiler, mill selection, and daily operation levels

Application
Unit #1 a 680-megawatt coal-fired generating unit with a B&W boiler and GE turbine
• 375 Acre Site

• Two 680 MW (Gross) Coal Fired Units

• 5000 to 6000 tons of coal burned per typical day per unit. Delivery by barge.

• 400-500 tons fly ash per day produced per unit. Fly ash reuse by ProAsh.

• Selective Catalytic Reduction (SCR) for NOx control.

• 167 Employees including Coal and Ash Handling shared with Wagner Plant.

• Air Quality Control System Project (Sorbent Injection and Baghouse for Hg and SO3 control, Wet Scrubber for SO2 control) under way to meet Healthy Air Act Requirements Jan 1, 2010.

• Unit 1 commissioned in 1984 – GE Turbine & B&W Boiler.

• Unit 2 commissioned in 1991 – GE Turbine & B&W Boiler.
Boiler Design

Hot-side Precipitator located before the Air Heaters
Types of Coal and Unit Operation

Coal

- Low Sulfur Eastern Bituminous Coal and/or Synfuel (mined in Kentucky / West Virginia)
- Russian
- Other Foreign Coals As Requested by

Operation

- Day: high load regulation - 680
- Night: lower loads – 550 and below
Ozone Season – May to September

Rules:

• SCR Design is 90% NOx Reduction (Diff. Between SCR Outlet and Inlet NOx)

• Minimum Desired SCR Inlet Temp. = 585° F (can achieve 90% NOx reduction at or above this temp.)

• Minimum Inlet Temp. = 555° F (if temp. drops below, ammonia flow ceases)

• Maximum Economizer Outlet Temp. = 680° F (limitation is ductwork expansion joint material)

• Ammonia Slip < 5 ppm (measured at SCR Outlet)

• Temperature controlled by combination of economizer bypass dampers and economizer outlet dampers
NOx Reduction Capabilities

Overfire Air:

- Used to reduce inlet NOx down to 0.4 lb/mmBtu

SCR:

- Expected NOx Reduction: 90%
 (Delta between inlet & outlet NOx)
SCR Systems

Located on the hot-side of the boiler after the hot-side precipitators.

Installed in 2001 to reduce NOx.
The SCR design mandates a minimum inlet flue gas temperature of 555 degf to keep the SCR's in-service. An economizer bypass system, which was part of the initial design, allows flue gas to bypass the economizer section of the boiler and then “re-mix” with the economizer outlet flue gas to increase overall flue gas temperature to the SCR. Some temperature is also lost as the gas passes through the precipitator (see details on next slide).
After installation of SCRs and for several years following, Brandon Shores struggled with standard DCS controls to maintain this minimum SCR inlet temperature during ozone season mainly due to the heat loss experienced across the precipitators and limitations of the standard DCS control strategies. When the SCR inlet temperature goes below 555 degf, the SCR ammonia system in the SCR automatically trips off and all NOx emissions are sent directly to stack which results in a high cost to the utility.
Before This Project

Solution:
- Control the SCR Inlet Temperature using the Economizer Bypass Damper and Economizer Inlet Damper
- Use Economizer Remix Temperature as Feed-forward

Results:
- The base controls would go into a “Hunting” mode unexpectedly. The bypass damper would continually move from 0-100% (trend on next slide)
- The SCR inlet temperature lagged behind the economizer remix temperature significantly.
 - Controlling the SCR inlet temperature was difficult.
 - A change in the remix temperature could take up to 90 minutes to fully realized in the SCR inlet temperature
 - Low SCR inlet temps (due to low loads) tripped the ammonia system. This resulted in a large cost Impact due to higher NOx.
 - SCR inlet temperature below 585° F results is less than optimum SCR performance (SCR Catalyst is most effective between 585° F & 600° F)

Overall there were design problems with the original base DCS controls
Damper Swings
Combustion Optimization Ruled Out

Why?

• Burner Register Controls are Manual.

• No DCS feedback regarding burner register positions.

• The flyash quality is constantly monitored by flyash processing facility and must be maintained at all times (process cannot handle large fluctuations in LOI).

• Prior attempt to manipulate combustion via a Neural Network was unsuccessful.
In 2006, Constellation contracted Emerson Process Management Power and Water Solutions to provide an optimization system to first study the boiler design and provide an optimization system to optimize the SCR inlet flue gas temperature using a combination of advanced DCS control structures and a fuzzy neural model based optimization system.
Goals of Project

- Improve Base Ovation DCS Controls at Higher Loads for More Consistent Economizer Remix Temperature and SCR Inlet Temperature

- Add Optimization to Increase SCR Inlet Temperatures at Lower Loads and Reduce Shutoff of Ammonia Due to Low SCR Inlet Temperatures
SCR Temperature Optimization

Part #1
New DCS Base Temperature Controls Design
New Ovation DCS Base Remix Temperature Controls Design

- Ovation DCS is now controlling Economizer Remix Temperature by using the Economizer Bypass Damper and Economizer Outlet Damper (rather than attempting to control SCR inlet temp).

- Control Structures use Bypass Damper first then begin to use the Economizer Outlet Damper when Bypass is fully opened and Remix Temperature is below setpoint.

- SCR Inlet Temperature is more consistent/predictable as a result of the better-controlled Remix Temperature.

- Base Full Load Remix Temperature Setpoint is ~ 600° F.

- Remix Temperature must not exceed 680° F due to precipitator issues.

- Remix Temperature setpoint slides to ~600° F as load decreases.

- 600° F is minimum setpoint.
Graphic Changes for the new Temperature Control Design

<table>
<thead>
<tr>
<th>LOC</th>
<th>UNIT MASTER</th>
<th>DRUM TEMP</th>
<th>REHEAT SPRAYS</th>
<th>ATTEMP SPRAYS</th>
<th>AUX STEAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>21A/22A HEATER</td>
<td>21B/22B HEATER</td>
<td>23 HEATER</td>
<td>24 HEATER</td>
<td>26 HEATER</td>
<td>27 HEATER</td>
</tr>
<tr>
<td>CNDSTE PUMPS</td>
<td>DEA STG TK LVL</td>
<td>SEAL STEAM</td>
<td>FWACS SYSTEM</td>
<td>WATER CHEMISTRY</td>
<td>21 COOL TMR</td>
</tr>
<tr>
<td>BFBP TEMPS</td>
<td>SUBF PUMP</td>
<td>FEED PUMP</td>
<td>SPARE PUMP</td>
<td>BFPT ST-SP</td>
<td>21 SBAC</td>
</tr>
<tr>
<td>21 COMPT</td>
<td>22 COMPT</td>
<td>23 COMPT</td>
<td>24 COMPT</td>
<td>25 COMPT</td>
<td>26 COMPT</td>
</tr>
<tr>
<td>21 FANS</td>
<td>22 FANS</td>
<td>21 AIR HTR</td>
<td>22 AIR HTR</td>
<td>OVERFIRE AIR</td>
<td>LEAK PURGE</td>
</tr>
<tr>
<td>TURBINE STATUS</td>
<td>DIFF XPANSION</td>
<td>HYDROGEN TEMPS</td>
<td>TURBINE LUBE OIL</td>
<td>CIRC WTR PUMPS</td>
<td>BOILER SEAL AIR</td>
</tr>
<tr>
<td>21 SCR</td>
<td>21 SCR NH3/AIR</td>
<td>22 SCR</td>
<td>22 SCR NH3/AIR</td>
<td>SCR AIR COMP</td>
<td>UREA SYSTEM</td>
</tr>
<tr>
<td>MASTER MENU</td>
<td>TAGOUT MENU</td>
<td>GROUP MENU</td>
<td>SYSTEM STATUS</td>
<td>STRAIN GAUGES</td>
<td></td>
</tr>
</tbody>
</table>

Where ideas become solutions. EMERSON GLOBAL USERS EXCHANGE
Graphic Changes for the new Temperature Control Design

![Temperature Control Mode](image)

<table>
<thead>
<tr>
<th>LOOP</th>
<th>SP MODE SELECT</th>
<th>SP MODE</th>
<th>INLET TEMP</th>
<th>REMIX TEMP</th>
<th>LOOP MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCR 21 Temp Control</td>
<td>REMIX</td>
<td>INLET</td>
<td>PV 622.3</td>
<td>PV 660.5</td>
<td>AUTO</td>
</tr>
<tr>
<td>SCR 22 Temp Control</td>
<td>REMIX</td>
<td>INLET</td>
<td>PV 626.2</td>
<td>PV 660.7</td>
<td>AUTO</td>
</tr>
</tbody>
</table>

IVY SCR OPTIMIZER PERMISIVES

- IVY PROGRAM READY
- AGR PROGRAM READY
- SCR PATH 21 OPEN
- SCR PATH 22 OPEN
- SCR 21 INLET TEMPS GOOD QUALITY
- SCR 22 INLET TEMPS GOOD QUALITY
- ECON 21 OUTLET REMIX TEMP GOOD QUALITY
- ECON 22 OUTLET REMIX TEMP GOOD QUALITY
- LOC DEMAND OK
- 4 OR MORE LIMITS IN SERVICE
- 21 ID CONTROLLER IN AUTO
- 22 ID CONTROLLER IN AUTO
- FURNACE O2 CONTROLLER IN AUTO
- BOILER READY

Where ideas become solutions.
Graphic Changes for the new Temperature Control Design

Select: Remix or SCR Inlet Mode
Current Mode indication
Process & Setpoint Values
Bypass & Outlet Dampers Auto/Manual
Graphic Changes for the new Temperature Control Design
Remix Temperature Controls:
General Tips

- The new DCS controls for the Econ Remix temperature are designed to be used: through the entire load range, year round, and with the SCR in or out of service
 - If remix temperature thermocouple goes *Bad Quality*, an alarm will appear. The recommendation is for operator to go to *Manual* on both dampers
 - Switching to old mode of controlling the SCR inlet temp is an option, but this mode utilizes remix temperature as *Feed-Forward*

- Switching between the old temperature controls and new temperature controls can be done with the dampers in *Auto*.

 Note: A small bump may occur since the two modes are controlling slightly different processes.

 Ops should monitor dampers while making the switch

- The goal is to remove the old temperature controls at the end of the year
SCR Temperature Optimization

Part #2
Optimization of SCR Inlet Temperatures at Lower Loads (SCR OPT)
SCR Inlet Temperature Optimization at Lower MW Loads

- The Specific Low Loads: ~350 MW to ~450 MW
- The Goal: Raise SCR Inlet Temperatures at Lower MW Loads to Keep Ammonia System in Service and Raise % Removal of NOx
- The Method: Calculate and inject optimal bias settings for 2 Ovation DCS control parameters

 1. Bias O2 Setpoint

 Purpose: More Air in Boiler Gives Higher Temperatures. The current range of bias is a 0 – 1.9% increase in O2

 2. Biases ID Fans

 Purpose: Bring two SCR inlet temperatures closer together to raise minimum temperature. The current range is 5% of total bias

 (One Fan +2.5% and the Other Fan -2.5%)
SCR Inlet Temperature Optimization at Lower MW Loads

Ovation DCS Control Modifications
New Optimization Bias Added to O2 Loop

- When SCR OPT Optimization System is On and SCR OPT O2 Bias is selected, SCR OPT O2 Bias will be used instead of operator bias
- Range of Bias is 0-1.9%: Additional air will result in higher SCR inlet temps at lower loads
- SCR OPT O2 Bias will be removed once load > 450 MM
- If the operator needs to bias O2 at loads > 450, then the O2 Bias should be removed from the SCR OPT control and the bias should be done as before.
- When MW load is decreasing at night, the operator should put SCR OPT in control of the O2 bias
New Optimization Bias Added to ID Fan Loop

- When the SCR OPT Optimization System is On and the SCR OPT ID Fan Bias is selected, the SCR OPT ID Fan Bias will be used instead of any operator bias.
- The current range of bias is a total of 5% (one ID Fan can be +2.5% and the other can be -2.5%). This bias will allow the SCR inlet temps to be controlled closer together.
- The SCR OPT ID Fan Bias will be removed once load > 450 MM.
- If the operator needs to bias the ID Fans at loads > 450, then the ID Fan Bias should be removed from SCR OPT control and the bias should be done as before.
- When load decreases at night, SCR OPT should be put in control of ID Fan Bias.
Graphic Changes for the new SCR Inlet Temperature Optimization

Optimizer Status

SCR Temperature Control

<table>
<thead>
<tr>
<th>LOOP</th>
<th>SP MODE SELECT</th>
<th>SP MODE</th>
<th>INLET TEMP</th>
<th>REMIX TEMP</th>
<th>LOOP MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCR 21 Temp Control</td>
<td>REMIX</td>
<td>REMIX</td>
<td>PY 622.3</td>
<td>PY 611.5</td>
<td>BYP AUTO</td>
</tr>
<tr>
<td>SCR 22 Temp Control</td>
<td>REMIX</td>
<td>INLET</td>
<td>PY 626.2</td>
<td>PY 600.7</td>
<td>BYP AUTO</td>
</tr>
</tbody>
</table>

SCR Temperature Optimization (IVY)

<table>
<thead>
<tr>
<th>LOOP</th>
<th>SP MODE SELECT</th>
<th>SP MODE</th>
<th>WDF Bias</th>
<th>IVY Bias</th>
<th>LOOP MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>21/22 3D Fan Control</td>
<td>IVY ON</td>
<td>IVY OFF</td>
<td>1.00</td>
<td>0.50</td>
<td>AUTO</td>
</tr>
<tr>
<td>Furnace O2 Control</td>
<td>IVY ON</td>
<td>IVY OFF</td>
<td>1.00</td>
<td>-0.05</td>
<td>AUTO</td>
</tr>
</tbody>
</table>

IVY/Optimizer Status

IVY Ready to Enable

IVY SCR Optimizer Permissives

IVY Program Ready
AQR Program Ready
SCR Path 21 Open
SCR Path 22 Open
SCR 21 Inlet Temps Good Quality
SCR 22 Inlet Temps Good Quality
ECOK 21 Outlet Remix Temp Good Quality
ECOK 22 Outlet Remix Temp Good Quality
LOC Demand OK
4 Or More Compts In Service
21 ID Controller In Auto
22 ID Controller In Auto
Furnace O2 Controller In Auto
Boiler Ready
Graphic Changes for the new
SCR Inlet Temperature Optimization

Optimizer Status

- **SCR OPT PROGRAM TROUBLE**
 - SCR OPT Program is Not Running or Aggregates Program is Not Running
 - ACTION: Call Emerson

- **BOILER NOT READY**
 - Boiler Permissives Have Not Been Met for Boiler Optimization
 - ACTION: Check Permissive Window on This Graphic to See Which Permissive is Not Met

- **SCR OPT READY TO ENABLE**
 - All Boiler Permissives Made
 - SCR OPT Programs Are Running
 - SCR OPT Optimization is OFF

- **OPTIMIZER READY**
 - All Boiler Permissives Made
 - SCR OPT Programs Are Running
 - SCR OPT Optimization is ON
 - O2 and ID Fans Are Not in SCR OPT Control

- **OPTIMIZER ON O2 ONLY**
 - All Boiler Permissives Made
 - SCR OPT Programs Are Running
 - SCR OPT Optimization is ON
 - O2 Bias in SCR OPT Control, ID Fan Bias Not in SCR OPT Control

- **OPTIMIZER ON IDS ONLY**
 - All Boiler Permissives Made
 - SCR OPT Programs Are Running
 - SCR OPT Optimization is ON
 - O2 Bias Not in SCR OPT Control, ID Fan Bias In SCR OPT Control

- **OPTIMIZER RUNNING**
 - All Boiler Permissives Made
 - SCR OPT Programs Are Running
 - SCR OPT Optimization is ON
 - O2 Bias In SCR OPT Control, ID Fan Bias In SCR OPT Control
Graphic Changes for the new SCR Inlet Temperature Optimization

Optimizer System Buttons

- **UNIT**: LOAD 688 MW
- **IVY/OPTIMIZER STATUS**: IVY READY TO ENABLE
- **IVY SCR OPTIMIZER PERMISSIVES**
 - IVY PROGRAM READY
 - SCR PATH 21 OPEN
 - SCR INLET TEMPS GOOD QUALITY
 - SCR 22 INLET TEMPS GOOD QUALITY
 - COMPLIANCE 21 INLET REMIX TEMP GOOD QUALITY
 - COMPLIANCE 22 INLET REMIX TEMP GOOD QUALITY
 - LOC DEMAND OK
 - 4 OR MORE COMPS IN SERVICE
- **21/22 3D Fan Control**
 - IVY ON: IVY OFF
 - IVY TEMP: 100
 - IVY BIAS: 0.50
 - IVY BIAS: 0.54
 - LOOP MODE: AUTO
- **Furnace 02 Control**
 - IVY ON: IVY OFF
 - IVY TEMP: 100
 - IVY BIAS: 0.01
 - IVY BIAS: -0.05
 - LOOP MODE: AUTO

Where ideas become solutions.
Overall SCR OPT Optimization System:

- **On/Off**
 - **On** – Optimizer On & controlling ID bias
 - **Off** – Optimizer Off & not controlling ID bias
 - **Hold** – SCR OPT Optimizer Off, but does have control of ID Bias (if SCR OPT optimizer is turned on, it will have control of ID Bias)

Graphic Changes for the new SCR Inlet Temperature Optimization

SCR OPT Optimizer System Buttons

<table>
<thead>
<tr>
<th>Loop</th>
<th>SP Mode Select</th>
<th>SP Mode</th>
<th>WDPF Bias</th>
<th>IVY Bias</th>
<th>Loop Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>21/22 ID Fan Control</td>
<td>IVY ON</td>
<td>IVY OFF</td>
<td>HOLD</td>
<td>0.50</td>
<td>AUTO</td>
</tr>
<tr>
<td>Furnace O₂ Control</td>
<td>IVY ON</td>
<td>IVY OFF</td>
<td>HOLD</td>
<td>0.01</td>
<td>AUTO</td>
</tr>
</tbody>
</table>
Graphic Changes for the new
SCR Inlet Temperature Optimization
Optimizer System Permissives

<table>
<thead>
<tr>
<th>Loop</th>
<th>SP Mode Select</th>
<th>SP Mode</th>
<th>Inlet Temp</th>
<th>Remex Temp</th>
<th>Loop Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCR 21 Temp Control</td>
<td>REMIX</td>
<td>INLET</td>
<td>PV 622.3</td>
<td>SV 619.8</td>
<td>BYP AUTO/OUT AUTO</td>
</tr>
<tr>
<td>SCR 22 Temp Control</td>
<td>REMIX</td>
<td>INLET</td>
<td>PV 622.2</td>
<td>SV 619.8</td>
<td>BYP AUTO/OUT AUTO</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Loop</th>
<th>SP Mode Select</th>
<th>SP Mode</th>
<th>IVY Bias</th>
<th>Loop Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>21/22 ID Fan Control</td>
<td>IVY ON</td>
<td>IVY OFF</td>
<td>FULL</td>
<td>AUTO</td>
</tr>
<tr>
<td>Furnace O2 Control</td>
<td>IVY ON</td>
<td>IVY OFF</td>
<td>FULL</td>
<td>AUTO</td>
</tr>
</tbody>
</table>
Graphic Changes for the new SCR Inlet Temperature Optimization

Optimizer System Permissives

- SCR OPT PROGRAM READY
 - SCR OPT program is operational
- AGR PROGRAM READY
 - AGR program is operational
- SCR PATH 21 AND 22 OPEN
 - Both flow paths must be open to turn scr optimization system on
- SCR 21/22 INLET TEMPS AND 21/22 REMIX TEMPS GOOD QUALITY
 - Must have good quality on all 4 temperatures for optimization to be on
 - Bad quality on any of the 4 will automatically turn SCR OPT scr optimization off and optimization biases will go to ~0
- LDC DEMAND OK
 - LDC demand must be >310 mw to turn optimization system off
 - If demand goes below 310 mw, optimization system will automatically turn off and any optimization biases will go to ~0
- 4 OR MORE COMPS IN SERVICE
 - SCR OPT SCR optimization system can only be turned on if 4 or more compartments are in service
- 21/22 ID CONTROLLER IN AUTO
 - 21/22 ID fan controllers must be in AUTO for CRO to enable the ID fan bias for SCR OPT
- FURNACE O2 CONTROLLER IN AUTO
 - Furnace O2 controller must be in AUTO for CRO to enable the o2 bias for SCR OPT
- BOILER READY
 - Logical AND of permissives 3-8 above. Indicates the boiler is ready for optimization

Where ideas become solutions.
Graphic Changes for the new SCR Inlet Temperature Optimization

LDC

Messages are the same as in slide 28
Graphic Changes for the new SCR Inlet Temperature Optimization

Fan Controls
SCR Optimization

General Tips

- **IVY Should Be On and In Control of Biases of ID Fans and O2**
 - High Loads: SCR OPT should not move ID Fans or O2, Optimization Biases should be 0
 - If operator needs control of either at high loads, SCR OPT should be Off for that parameter. Bias the normal way.
 - Once excursion ends, control of that parameter should be returned to SCR OPT (optimization).

- **Ramping Unit Down**
 - As unit ramps Down, SCR OPT (optimization) will try to control SCR inlet temp to ~580 – 585°F (alarm occurs at 560°F, ammonia trips at 555°F)
 - SCR OPT (optimization) will also try to bring SCR 21 inlet temp and SCR 22 inlet temp closer together
 - Biases will be applied to O2 and ID Fans from SCR OPT (optimization)
 - Make sure SCR OPT is On and Controlling ID Fan Bias and O2 Bias prior to ramp down for maximum effect

- **Ramping Unit Up**
 - As unit ramps up, SCR OPT (optimization) Biases to O2 and ID Fans should slowly bleed out to a value near 0 as load increases.
 - Unless operator removes optimization control of these Biases, SCR OPT (Optimization) will still have control of Biases
Unit 1 SCR Opt Overview

Unit Load: 679 MW

IVY/Optimizer Status: BOILER NOT READY

SCR Temperature Control

<table>
<thead>
<tr>
<th>Loop</th>
<th>SP Mode</th>
<th>Inlet Temp</th>
<th>PV</th>
<th>Remix Temp</th>
<th>PV</th>
<th>Loop Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCR 11 Temp Control</td>
<td>Remix</td>
<td>PV 624.2</td>
<td>SP 619.5</td>
<td>PV 666.2</td>
<td>SP 660.0</td>
<td>BYP Auto</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OUT Auto</td>
</tr>
<tr>
<td>SCR 12 Temp Control</td>
<td>Remix</td>
<td>PV 632.6</td>
<td>SP 619.5</td>
<td>PV 660.4</td>
<td>SP 660.0</td>
<td>BYP Auto</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OUT Auto</td>
</tr>
</tbody>
</table>

SCR Temperature Optimization (IVY)

<table>
<thead>
<tr>
<th>Loop</th>
<th>SP Mode</th>
<th>WDPF Bias</th>
<th>IVY Bias</th>
<th>Loop Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/12 ID Fan</td>
<td>OFF</td>
<td>-0.12</td>
<td>-0.518</td>
<td>Auto</td>
</tr>
<tr>
<td>Furnace O2</td>
<td>OFF</td>
<td>0.01</td>
<td>-0.057</td>
<td>Auto</td>
</tr>
</tbody>
</table>

IVY SCR Optimizer Permissives

- IVY Program Ready
- AGR Program Ready
- SCR Path 11 Open
- SCR Path 12 Open
- SCR 11 Inlet Temps Good Quality
- SCR 12 Inlet Temps Good Quality
- Econ 11 Out Remix Tmp Good Quality
- Econ 12 Out Remix Tmp Good Quality
- LDC Demand OK
- 4 or More Compts In Service
- 11 ID Controller In Auto
- 12 ID Controller In Auto
- Furnace O2 Controller In Auto
- Boiler Ready
Unit 2 SCR Optimization

SCR Temperature Control

<table>
<thead>
<tr>
<th>Loop</th>
<th>SP Mode</th>
<th>Inlet Temp</th>
<th>Remix Temp</th>
<th>Loop Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCR 21 Temp Control</td>
<td>Remix</td>
<td>PV 610.2, SP 614.5</td>
<td>PV 660.2, SP 660.0</td>
<td>BYP: Auto, OUT: Auto</td>
</tr>
<tr>
<td>SCR 22 Temp Control</td>
<td>Remix</td>
<td>PV 615.9, SP 614.5</td>
<td>PV 659.7, SP 660.0</td>
<td>BYP: Auto, OUT: Auto</td>
</tr>
</tbody>
</table>

SCR Temperature Optimization (IVY)

<table>
<thead>
<tr>
<th>Loop</th>
<th>SP Mode</th>
<th>WDPF Bias</th>
<th>IVY Bias</th>
<th>Loop Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>21/22 ID Fan</td>
<td>OFF</td>
<td>-0.09</td>
<td>0.638</td>
<td>Auto</td>
</tr>
<tr>
<td>Furnace O2</td>
<td>OFF</td>
<td>-0.63</td>
<td>-0.047</td>
<td>Auto</td>
</tr>
</tbody>
</table>

IVY SCR Optimizer Permissives

- IVY Program Ready
- AGR Program Ready
- SCR Path 21 Open
- SCR Path 22 Open
- SCR 21 Inlet Temps Good Quality
- SCR 22 Inlet Temps Good Quality
- Econ 21 Out Remix Tmp Good Quality
- Econ 22 Out Remix Tmp Good Quality
- LDC Demand OK
- 4 or More Compts In Service
- 21 ID Controller In Auto
- 22 ID Controller In Auto
- Furnace O2 Controller In Auto
- Boiler Ready
Years of experience in process control design, implementation, and field installation

With more than 400 SmartProcess installations on many different control systems, Emerson is the market leader in advanced control.