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V E N D O R  VOICE

PAT Tools for Accelerated Process 
Development and Improvement
Gregory McMillan, Trish Benton, Yang Zhang, and Michael Boudreau

B roadley-James Corporation, 
Emerson Process 
Management, and the 
University of Texas at Austin 

are working together to examine and 
quantify the potential for faster 
optimization of batch operating 
points, process design, and cycle 
times. We’re also looking for more 
reproducible and predictable batch 
endpoints. 

The objective of this effort is to 
show that the impact of PAT can be 
maximized through the integration of 
dynamic simulation and multivariate 
analytics in a laboratory-optimized 
control system during product 
development.

Data from bench-top and pilot-
plant cell culture runs are being used 
to create multivariate analytic and 
high-fidelity, first-principle cell 
culture models to prototype process 
changes. The tools that are being used 
could provide significant improvement 
in process development and process 
control by laying a foundation for real-
time release capabilities as defined by 
the PAT guidelines (1). Potential 
benefits include a more automated, 
seamless, and effective 
commercialization process that should 
translate to faster time to market and 
early release of biological products. 

Currently more than 400 
biotechnology medicines are in 
development for more than 100 
diseases (2). These products generally 

require overlapping and iterative 
stages for process development and 
commercialization: cell line selection 
and development, media optimization, 
process conditions optimization and 
verification, scale-up, project 
definition, and plant design.

Beta tests are in progress to explore 
the use of a new dynamic model and 
online data analytics in the 
development and scale-up of new 
products derived from mammalian cell 
lines. A key objective is to make 
results fully public to encourage 
extensive use and advancement of the 
concepts and methodology. 

Although our tests involve bench-
top and pilot-plant bioreactors, these 
tools are important for industrial 
bioreactors as well. Data collected 
during product and process 
development often may be the best 
source for initial model development, 
particularly because changes must be 
minimized in production runs. Using 
these tools in a laboratory provides an 
opportunity to evaluate their 
performance and establish an effective 
basis in a production system for real-
time release.

LABORATORY SET-UP

The CHO cell line for these beta tests 
uses a glutamine synthetase (GS) 
expression system to produce an 
antibody. GS catalyses biosynthesis of 
glutamine from glutamate and 
ammonia. The GS expression system 
uses methionine sulphoxamine (MSX) 
in culture media to inhibit endogenous 
GS. These CHO cells are modified 
with the recombinant protein of 
interest and an exogenous GS selective 
marker (3, 4). No exogenous glutamine 
can be added to this system, or the 
selection pressure will break down and 
lead to a culture with a great deal of 
genetic drift for the recombinant 
protein being produced. Another side 
effect of this metabolic change is that 
the GS system consumes its own 
waste ammonia, so ammonia levels 
tend to be lower in these cultures. 
These cells also tend to produce less 

Photo 1: Benchtop bioreactors connected  
to a laboratory-optimized industrial DCS  

BROADLEY-JAMES (WWW.BROADLEYJAMES.COM)
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Photo 2: Pilot-plant sized bioreactor used for scale-up   
THERMO FISHER SCIENTIFIC (HYCLONE) WWW.HYCLONE.COM/BPC/INDEX.HTM

lactate. Consequently, this system 
requires less sodium carbonate to 
maintain pH, resulting in lower 
osmolality than other CHO selection 
systems. The lower ammonia and 
osmolality levels contribute to an 
increase in culture longevity, resulting 
in batch times of 22–30 days rather 
than the 10–12 days normally 
associated with CHO lines. Cells are 
maintained and batches are run in a 
proprietary, serum free media 
supplemented with glutamate before 
and during the run.

Our laboratory bioreactors are 
controlled by a laboratory-optimized 
industrial distributed control system 
(DCS) that can use embedded 
modeling, analytical, monitoring, 
tuning, and advanced control tools. 
For the beta tests, we embedded those 
tools in a new DCS station that was 
connected by OPC communication 
protocol to an existing laboratory 
DCS application station. Multiple 7-
liter bench-top bioreactors are 
connected to the laboratory DCS 
(Photo 1) for process optimization and 
model development. A 100-liter 
jacketed pilot-plant size “single-use” 
bioreactor (Photo 2) was connected to 
the laboratory DCS for scale up of the 
process and the model.

A key part of our test set-up is the 
use of on-line and at-line analytical 
measurements. Each bioreactor has a 
near-infrared (NIR) probe and a 
dissolved carbon dioxide (DCO2) 
electrode as well as dissolved oxygen 
(DO) and pH electrodes. Our at-line 
analyzer (Photo 3) has an automated 
sample system that every four hours 
provides measurements of lactate, 
ammonia, glutamine, glutamate, cell 
count, cell viability, cell diameter, and 
osmolality. These measurements enable 
an extension of basic control (e.g., 
proportional and proportional–integral 
control) and the addition of advanced 
control (e.g., model predictive control) 
for cell culture. These feedback 
controllers inherently transfer 
variability from key process variables 
(e.g., DO and media formulations) to 
feeds (e.g., air, O2, glucose, and amino 
acids) and provide a standardized and 
direct method for adjustment of the 
process variables according to their set-

points by a higher level of control or 
supervision (5).

Additionally a method has been 
developed to provide the fastest 
possible automated approach to a PID 
controller set-point (3). The extension 
of feedback control offers these 
advantages:

• eliminates the need to develop 
schedules for automated dosing or feed 
profiling

• makes design of experiments less 
complex

• allows for fewer batches for design 
of experiments

• provides more reproducible 
batches

• speeds transitions to new process 
conditions

• facilitates more effective data 
analytics by elimination of 
unmeasured disturbances

• improves commercialization of 
optimization opportunities by making 
them faster and more definable.

MODEL STRUCTURE,  
SET-UP, AND USE

Our dynamic model uses first-
principle differential equations to 
calculate mass and energy balances for 
liquid, bubble, and head spaces. We 
set up the equations to handle batch, 
continuous, or perfusion processes. 
Population balances are used for cell 
viability and size, and pH is 
computed from a 
charge–balance 
equation. Mass 
transfer 
coefficients are 

calculated from empirical relations for 
gassed power and for the transition 
between turbulent and laminar 
regions. We used Michaelis-Menten 
inhibition and limitation kinetics with 
neural network options for the effects 
of ammonia, lactate, DO, hydrogen 
ion, and substrate concentrations on 
growth and formation rates. Our 
model also readily accepts other 
kinetic rate calculations. 

The effect of temperature on 
kinetics is modeled by an empirical 
simplification of the Arrhenius 
equation. A recent study concluded 
that intracellular concentrations need 
not to be modeled because 
intracellular kinetics are much faster 
than cell growth (6). Consequently, a 
first-principle model of cell and 
medium concentrations can provide a 
useful indicator of complex metabolic 
pathways. 

Although this model was developed 
for a mammalian cell process, the 
structure and library modules are 
general enough to model products 
made by bacterial, fungal, and yeast 
fermentations as well. Previous studies 
indicate that the model can be used to 
prototype-model predictive control of 
growth and product formation rates 
that can reduce batch times by 40% 
and 
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improve yields by 10% (5). The 
generic building-block nature of our  
modules enables the library to be used 
and expanded to simulate chemical 
and secondary processes. 

Model Speed-Up: We use a 
combination of kinetic, phase, and 
DCS module execution real-time 
factors to speed-up our model by up to 
1,000 times real-time. Alternatively, 
batch data generated by a virtual or 
actual bioreactor can be replayed at 
1,000× real-time depending upon 
CPU capability relative to the 
complexity and number of modules. 
These speed-up factors mean that a 
22-day virtual bioreactor batch 
becomes a 32-minute batch. 
Furthermore, a 22-day actual 
bioreactor batch can be played back in 
32 minutes. Whereas a 1,000× virtual 
bioreactor batch could conceptually be 
played back in a couple of seconds, our 
virtual batch play-back may take three 
minutes due to CPU and resolution 
limitations. 

Embedding of the modeling, 
analytical, monitoring, and advanced 
control tools means that our DCS 
module execution real-time factor and 
playback speed have no effect on 
controller tuning or results. Initial 
simulation studies have shown that 
proper handling of scale-up (volumes, 
mass transfer rates, and f low rates) in 
this model  provides similar batch 
profiles of cell count and product 
concentration. 

Our model plays a key role in 
defining and prototyping feedback 
control systems that can accelerate 
process development and 
commercialization. The model can 
predict process dynamics (process 
gain, dead time, and time constant) 
and the controller tuning settings 
(controller gain, reset time, and rate 
time). Recently released, embedded, 
on-line loop performance monitoring 
and controller tuning tools identify 
loops with significant variability that 
could be improved by better tuning 
(7). Process dynamics and controller 
tuning settings are automatically 
identified whenever a set-point is 
changed. Results from such 
performance monitoring of an actual 
bioreactor can be used not only to 

improve actual bioreactor operation, 
but also to improve model fidelity by a 
better match of process dynamics and 
controller tuning. 

Model Use: A small subset of our 
model can be used to provide a more 
robust and optimal design of 
experiments (DOE) for identification 
of model parameters (8). Only the 
differential and algebraic equations 
(DAE) for viable cells, ammonia, 
lactate, glutamine, and product are 
involved. Feedback control of DO, 
pH, temperature, glucose, and 
glutamate eliminates the DAE for 
these process variables as well as the 
need for DOE yield and maintenance 
factors. Controller set-points are 
manipulated by the DOE, thereby 
eliminating the need for f low 
scheduling and profiling. 

Studies indicate that these DAE 
for the DOE can find a kinetic 
parameter value by five set-point 
changes in an associated loop at 
pertinent times in a batch cycle. The 
DOE results are also used for finding 
better operating points (set-points) for 
a process. We expect that the DOE 
will be an iterative process in which 
initial experiments are used for 
finding better process conditions and 
model parameters. A virtual bioreactor 
then runs faster than real-time to 
deepen process understanding and 
develop a more effective DOE, which 
further improves both process and 
model. The results may also lead to 
improved media formulation and cell-
line attributes. Bench-top bioreactors, 
online and automated at-line analysis, 
data analytics, loop performance 
monitors, and feedback controllers 
reduce variability not related to DOE. 

This approach offers several 
potential opportunities for faster 

process optimization and base-line 
verification:

• exploration of new operating 
regions

• focusing of further DOE
• evaluation of “what-if scenarios”
• diagnostics for abnormal batches
• deepening of process 

understanding
• prototyping of advanced controls 

and data analytics for monitoring and 
end-point prediction

• demonstration and verification of 
batch conditions and profiles.

Additionally, embedded advanced 
tools can automatically schedule 
changes in set-points and identify 
process dynamics that can be used to 
schedule tuning settings and to 
provide model predictive control of 
metabolic rates (5, 9). 

VIRTUAL PLANT

Our model, configuration, and tools 
can be exported as modules and 
downloaded to a personal computer or 
a DCS station or controller for use as 
a “virtual plant” to generate or play 
back batches faster than real-time (9). 
Alternatively, these modules can be 
downloaded to a DCS connected to 
an actual bioreactor. Applications have 
shown that an innovative MPC 
application can adapt online model 
parameters and provide inferential 
measurements (5, 9, 10). In this mode, 
the virtual plant runs a virtual 
duplicate of the control system in 
parallel with the actual control system. 
The virtual controllers use the same 
set-points as the actual controllers for 
primary process variables (5, 9, 10). So 
there are four principal modes of 
running a virtual plant: 

• real-time connection to an actual 
bioreactor

• 100–1,000× real-time as a  
stand-alone virtual bioreactor

• 1,000× real-time for fast  
play-back of an actual bioreactor

• 10,000× real-time for fast  
play-back of a virtual bioreactor. 

If proper scale-up factors are 
applied, the embedded tools go readily 
from bench-top bioreactors to pilot 
plants and eventually industrial-scale 
bioreactors. Our embedded, 
integrated, and preconfigured 

Photo 3: At-line analyzer with automated 
sample system for cells and media  

NOVA BIOMEDICAL (WWW.NOVABIOMEDICAL.COM/ 

BIOPROFILE/BIOPROFILEFLEX.HTML)
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approach eliminates the need for 
separate programs, OPC interfaces, 
data formatting, and special skills for 
set-up and use of the control system 
and PAT tools. A process engineer can 
concentrate more on process design 
without having to play the additional 
roles of statistician and control 
engineer (9).

The virtual plant has three 
distinguishing features. The first is an 
ability to use the actual configuration, 
historian, displays, and advanced 
control tool-set of an industrial DCS 
(without translation, emulation, 
special interfaces, or custom 
modifications) that is integrated with 
the process model (Figure 1). The 
configuration database is downloaded; 
and files for operator graphics, process 
history charts, and data history from 
the real plant can be copied to the 
same computer so users have the 
controls and unit operations in one 
place. The second key feature is the 
capability to run much faster than 
real-time in simulation and play-back 
modes. The third key feature is 
portability. This control system can be 
“scaled up” from a laboratory to an 
industrial plant by changing f low 
scales, input and output assignments, 
and adding operations not automated 
in the laboratory. And that reduces the 
time for project definition and control 
system configuration, check-out, 
training, and bioreactor 
commissioning. The virtual plant runs 
on any computer, anywhere to provide 
PAT tools with the same interface and 
working environment as an industrial 
DCS, as elucidated in the “Top 10 
List” box (9).

ON-LINE DATA ANALYTICS

It is now generally recognized that 
product quality and performance 
quality cannot be “tested into” 
products, but rather should be built-in 
by design. The PAT guideline 
advocates that manufacturers focus on 
understanding relevant multifactorial 
relationships among materials, 
manufacturing processes, 
environmental variables, and their 
effects on quality. One of four tool 
categories defined by the guideline to 
advance process understanding is 

“multivariate tools for design, data 
acquisition, and analysis.” 

Multivariate tools may be used to 
identify and understand relationships 
that are important in the design and 
development of biomanufacturing 
processes. Such tools may be used on-
line to identify processing difficulties 
that can lead to failure of a product to 
meet specifications. The ability to 
predict performance can provide a 
high assurance of quality on every 
batch and thus presents alternative 
mechanisms to demonstrate 
validation. In a PAT framework, 
validation can be demonstrated 
through continuous quality assurance 
when a process is continually 
monitored, evaluated, and adjusted 
using validated in-process 
measurements, tests, controls, and 
process end-points. 

One target in applying multivariate 
analytic tools is to provide an 
alternative procedure for final-product 
release. As defined by the PAT 
guideline, real-time release is the 

ability to evaluate and ensure 
acceptable quality for in-process  
and/or final products based on process 
data. The combined process 
measurements and other test data 
gathered during a manufacturing 
process can serve as the basis for real-
time release of the final product. With 
real-time quality assurance using 
multivariate techniques, desired 
quality attributes may be ensured 
through continuous assessment during 
manufacture. However, the 
multivariate tools selected and 
supporting work performed during 
process design and analysis will 
influence whether it is possible to 
achieve the goal of real-time release. 
Thus, the use of on-line multivariate 
tools will be an integral part of the 
beta test.

Analytic Tools: A number of 
multivariate statistical modeling 
techniques may be used to identify 
and study the effect and interaction of 
product and process variables. The 
two multivariate analysis techniques 

Figure 1: Integrated environment of embedded PAT and advanced control tools
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TOP 10 REASONS WE USE A VIRTUAL (RATHER THAN A REAL) PLANT

10 Can’t freeze, restore, and replay an actual plant batch

  9 No separate programs to buy, learn, install, interface, and support

  8 No waiting on laboratory analysis

  7 No raw materials to procure and warehouse

  6 No environmental waste to handle

  5 Virtual instead of actual problems

  4 Batches done in 15 minutes instead of 10 days

  3 Can operate plant on a tropical beach if we want

  2 Last time we checked our wallet, we didn’t have $100,000,000 on hand.

  1 A real plant doesn’t fit in our suitcase.
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most often provided in multivariate 
tools to analyze continuous and batch 
process operations are principal 
component analysis (PCA) and 
projection to latent structures (PLS). 

Principal Component Analysis: 
When used appropriately, PCA 
enables identification and evaluation 
of product and process variables that 
may be critical to product quality and 
performance. Equally important, this 
tool may be used to develop an 
understanding of the interactive 
relationship of process inputs and 
measurements and on-, in-, or at-line 
analysis of final product. When 
applied on-line, PCA may be used to 
identify potential failure modes and 
mechanisms and to quantify their 
effects on product quality.

Projection to Latent Structures: Also 
known as partial least squares, PLS 
may be use to analyze the impact of 
processing conditions on final-product 
quality parameters that are often 
measured using on-, in-, or at-line 
analysis of final products. When this 
technique is applied in an on-line 
system, it can provide operators with 
continuous prediction of end-of-batch 
quality parameters.

Successful application of these 
statistical multivariate techniques 
depends in part on the toolset 
selected. Various techniques for PCA 
and PLS model development have 
been implemented in commercial 
products. In some cases, a product 
may be designed to support only the 
analysis of continuous processes. In 
such applications, data analysis and 
model development often assume that 
a process is maintained at just one 
operating condition. 

To successfully address the 
requirements of batch processes 
common to the pharmaceutical 
industry, it is important that 
multivariate tools be designed to 
address varying conditions over a wide 
range of operation. Multiway PCA 
and PLS algorithms are commonly 
used in multivariate tools to address 
batch applications. Tools that support 
such algorithms are designed to allow 
a normal batch trajectory to be 
automatically established for each 
process input and measurement. PCA 

and PLS statistical analyses are then 
applied to deviations of those 
processes parameter measurements 
from their defined trajectories. 

HYBRID UNFOLDING AND  
DYNAMIC TIME WARPING

In some cases, collection of process 
data in a format that can be used by a 
given analytic tool is one of the 
greatest challenges in PCA and PLS 
model development. However, when 
those tools are integrated into control 
systems, it becomes possible for a 
manufacturer to automatically provide 
information for each batch. Three 
techniques have traditionally been 
used to unfold batch data for use in 
model development: time-wise 
unfolding, variable-wise unfolding, 
and batch-wise unfolding. However, 
for on-line PCA analysis, a relatively 
new approach known as hybrid 
unfolding offers some significant 
technical advantages (7). 

Another area with significant 
differences in commercial products is 
the manner in which variations in 
batch times are addressed in model 
development and in on-line 
application of PCA and PLS. A 
relatively new technique known as 
dynamic time warping (7) allows such 
variations to be addressed by 
automatically synchronizing batch 
data using key characteristics of a 
reference trajectory (Figure 2). 

Once PCA and PLS models have 
been developed using data from 
normal batches, then their 
performance in detecting faults and 

predicting variations in end-of-batch 
quality parameters may be tested by 
replaying data collected from 
abnormal batches. Most commercial 
modeling programs provide some 
facility to test a model in this manner. 
Once the model has been tested, then 
in some on-line systems it will be used 
only to report faults at the end of each 
batch. However, much more benefit 
may be achieved by using PCA and 
PLS analysis on-line. So our beta test 
will focus on such on-line application 
of those techniques.

In an on-line operation, deviations 
in quality parameters are detected 
through PLS. PCA can be used to 
detect abnormal operations resulting 
from both measured and unmeasured 
disturbances: 

Measured Disturbances: The 
impact of measured disturbances can 
be quantified by applying Hotelling’s 
T2 statistic. Deviations in this 
statistic above a threshold value 
indicate abnormal conditions. It is a 
multivariable generalization of the 
Shewhart chart (5).

Unmeasured Disturbances: 
Changes in unmeasured disturbances 
that affect an operation can be 
quantified by applying the Q statistic, 
also known as the squared prediction 
error (SPE). This statistic measures 
deviations in process operation that 
are not captured by process 
measurements (5).

A contribution plot can show how 
each process variable contributed to a 
deviation in the PCA statistic. Using 
the PLS model for on-line evaluation 
of a batch progression, operators can 
get a continuous indication of 
predicted quality parameters at the 
end of each batch. The operator 
interface for on-line PCA and PLS 
can be structured in many ways. One 
example is illustrated by Figure 3.

ANALYTIC MODEL DEVELOPMENT

Data gathered from simulations of 
processes and control systems may be 
used to develop initial PCA and PLS 
models. Before process information is 
collected to support development of 
PCA and PLS models, it is important 
that measurements and control loops 
are functioning properly (e.g., loops 

Figure 2: Application of dynamic time 
warping
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are “well tuned”) (5). Process 
operating conditions may need to be 
changed during a batch to allow 
interactions between process 
parameters to be seen and captured in 
the model. Because such changes may 
be impossible in a validated 
manufacturing system, these analytic 
tools ideally should be introduced 
during development. Data collected 
from experiments conducted during 
product and process development may 
often be the best for initial model 
development. Once a process is scaled 
up to production scale, parameter 
trajectories and model scaling for its 
PCA and PLS models may need to be 
updated. Using these tools during 
product development thus provides an 
opportunity to evaluate their 
performance and lays a foundation for 
their use in a production system for 
real-time release. 

WHAT’S NEXT

We have tests in progress for 
synergistic use of automated at-line 
analysis and an industrial DCS with 
new embedded PAT tools and existing 
advanced control tools for optimizing 
bench-top, pilot-plant, and virtual-
plant runs. We use a high-speed 
virtual plant to reduce the time 
required for process optimization, 

verification, scale-up, and design. The 
portability and utility of the model, 
control system, and PAT tools should 
lead to faster project schedules and 
more reproducible and efficient 
industrial production. Full public 
disclosure is planned to promote a 
widespread advancement in the state 
of the art. 
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Figure 3: Example of operator-interface to on-line analytics  EMERSON (WWW.EASYDELTAV.COM)
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