Back to the Basics - Process Control Diagnostics Improves Refinery Performance

James F. Beall

Emerson Process Management

James Beall

- Principal Process Control Consultant, Emerson Process Management
- > 26 Years experience in process control
 - 7 Years Emerson Process Management
 - 19 Years at Eastman Chemical Company
- Chairman ISA 75.25 Committee Control Valve
 Performance Testing
- → <u>James.Beall@emerson.com</u> 903-235-7935

A Solid Control Foundation is Essential to the Success of Any APC project

- The core of a solid foundation is good measurements and final elements.
- Deficiencies in the measurement and final element can increase the time required for process testing and identification by a factor of 5 or more and can significantly reduce the improvement in process capacity and efficiency provided by APC.
- Significant economic benefit can be obtained from a good control foundation!

A Winning Combination

© 2008, Emerson Process Management

Process Management

Key Take-Away Message

- Control key process parameters with less variability
- Operate closer to constraints with less variability

Lowered Variability

Largest and Most Frequent Opportunities in Basic Control

- Eliminate variability at the source
- Tune the controllers to meet control objectives
 - Coordinate Tuning Speed Based on Operating objectives
 - Attenuate Variability with Control/Equipment
- Utilize cascade and feed forward control
- Use a process analysis system to diagnose problems and tune loops

EnTech Statistic -: Control Loops with Excessive Variability

The undesirable behavior of control valves is the biggest contributor to poor loop performance and the destabilization of product uniformity".

> W. L. Bialkowski, President EnTech Control Engineering

© 2008, Emerson Process Management

AIChEin

Eliminate Sources of Variability: Valve Problems

Eliminate Sources of Variability: Valve Problems - Flow Control Loop

© 2008, Emerson Process Management

AIChEing

Eliminate Sources of Variability: Valve Problems - Flow Control Loop

AIChE₁₀₀

Eliminate Sources of Variability: Valve Problems - Flow Control Loop

© 2008, Emerson Process Management

Process Management

Eliminate Sources of Variability: Valve Problems – Regenerator Pressure Valve

- New facility, new valve
- Periods of good and back control performance
- The valve was a rotary "tight shutoff" made for on-off service but was "adapted" to continuous control

Eliminate Sources of Variability: Valve Problems – Regenerator Pressure Valve

Eliminate Sources of Variability: Valve Problems – Regenerator Pressure Valve

© 2008, Emerson Process Management

Process Management

Eliminate Sources of Variability: Valve Problems – After Improvements

© 2008, Emerson Process Management

AIChE₁₀₀

Eliminate Source of Variability: Poor Tuning

Before

After

Eliminate Source of Variability: Poor Tuning

© 2008, Emerson Process Management

AIChE₁₀₀

Setting the Control Foundation - Tuning

- → Utilize tuning methodology as a TOOL to coordinate tuning of all loops as a system
 - Methodical selection of the closed loop time constant of each loop, considering all interactions
 - Attenuate variability with control/equipment
 - Tuning to minimize resonance or "disturbance amplification" of lower level loops

Tuning Methods

- First tuning method due to Ziegler & Nichols (1942)
 - Called Quarter-Amplitude-Damping (QAD)
- "little black books"
- Default tuning (gain=1.0, Reset=1 min)
- Many people still do not use any method preferring to "tune-by-feel"
 - Classical control skills now rare
- Most older tuning methods try for "as fast as possible"
- Net result is each loop tuned independently
 - process dynamics not coordinated

Tuning Issues

- More aggressive less robust more resonance
 less change in the process dynamics to cause instability
- Some loops require aggressive tuning for disturbance rejection – must be sure process dynamics are "constant" and carefully coordinate tuning in other loops in the system.
- Most loops benefit from the none-oscillatory tuning- allows coordinated tuning of all loops in the unit and minimizes resonance.

Tuning Issues

In addition, optimized tuning procedures for unaided feedback controllers have limited practical value for continuous processes; they yield results that are far inferior to those obtainable with well damped feedback controls with simple feedforward and override control."*

*Buckley. P.S.. "Override Controls on a Chemical Reactor," in Proceedings of Texas A&M Instrumentation Symposium, Jan. 1970.

Coordinated Loop Tuning

- \rightarrow Manipulate the closed loop time constant, Lambda, (λ) to:
 - reject disturbances while ensuring stability
 - separate the break frequency of cascaded or interacting loops
 - treat all the loops in a Unit Operation as a SYSTEM
 - control variability pathways
- Allows optimization aimed at manufacture of uniform product more efficiently

Coordinated Tuning – Select Speed of Response

© 2008, Emerson Process Management

Process Management

Coordinated Tuning of all Loops as a System

Reactor feed Process Goal: constant feedstock ratios

© 2008, Emerson Process Management

Process Management

Ziegler-Nichols Tuning

Impact of Z-N Tuning - Feedstock Ratios Upset Flow Ratio % Ratio A/Total - Varies by 10% **Ratio B/Total - Varies by 10% Seconds**

© 2008, Emerson Process Management

Process Management

AIChE₁₀₀

Ziegler-Nichols Tuning

Lambda Tune Both Loops for Identical Response

Impact of Lambda Tuning - Feedstock Ratios Constant

Results of Coordinated Loop Tuning

 Less varability of key process variables which reduced low base temperature shutdowns

→ Reduced reflux from 275 lbs/hr to 200 lbs/hr

→ Reduced steam usage by 25%

Attenuate Variability with Control/Equipment

 "Capacity" in the process can be used to attenuate or absorb variability

→ Primary source of process capacity is level control

→ To utilize level control as a capacity tune the controller as slow as possible but still "fast" enough to hold the PV within the allowable level deviation (ALD) for a maximum load change

Lambda Tuning for Integrating Processes -Load Disturbance Response

© 2008, Emerson Process Management

AIChE₁₀₀

Utilize Level Control as Variability Sinks

- Choose the arrest time (Lambda) "slow" enough to provide a variability sink yet maintain level within the allowable variation
- Jambda = f (ALV / (Kp * MLD)
 - ALV = Allowable Level Variation
 - Kp = Integrating process gain
 - MLD = Maximum Load Disturbance

Level Tuning – Results Coker Tower **Before**

After

EMERSON

Process Management

AIChE₁₀₀

Reactor Levels and Outflows

© 2008, Emerson Process Management

Process Management

Utilize Cascade and Feedforward

"In addition, optimized tuning procedures for unaided feedback controllers have limited practical value for continuous processes; they yield results that are far inferior to those obtainable with well damped feedback controls with simple feedforward and override control."*

*Buckley. P.S.. "Override Controls on a Chemical Reactor," in Proceedings of Texas A&M Instrumentation Symposium, Jan. 1970.

Utilize Cascade and Feedforward

Before

After

You MUST have a process dynamics analysis and diagnostic toolkit of some type!

If you don't have process analysis toolkit, you are leaving a TON of money on the basement floor!

© 2008, Emerson Process Management

Process Management

Bum	o Sum	imary						×
Model:	1st Ord	ler						
Bump	DU	DY	Кр	Td	Tau1			
* 01	-0.498	4.02	-8.06	7.73	11.1		•	
02	-0.546	21.8	-39.9	6.01	22.6			Discard
* 03	0.488	-1.87	-3.84	8.15	13.2			
04	0.495	-15.9	-32.1	6.26	25.6			Reset
05	0.500	-17.7	-35.3	4.66	21.5			
06	0.500	-13.9	-27.8	0.258	24.8			
* 07	-0.503	1.83	-3.65	23.3	10.1			
* 08	-0.498	5.49	-11.0	16.3	16.4			
09	-0.501	20.0	-39.9	3.54	23.1		•	
Bump	Table Sur	nmary						
	Low Sp	read(%)	12.8	93.5	8.58			
	Average	Э	-35.4	3.95	23.5			
	High Spr	read(%)	21.6	58.4	8.59			
Sugge	sted Valu	ies 💿	Auto Disca	ard O	Man. Disca	ard		
	Nominal		-35.4	3.95	23.5			Calc
	Spread		21.6	58.4	8.59			
		Act <u>u</u> al	-35.4	3.95	23.5			
Units: DU in %Open, DY in ATS, Kp in ATS/%Open, Time Parameters in Sec								Help

AIChE₁₀₀

AIChE₁₀₀

Loop Qverview Tag: PC-2028.PV - R-28 Pressure Change Process: 1st Order Process: 1st Order Parameters: Kp=-1.77 %Span/%Out, Td=3.95 Sec, Tau1=23.5 Sec Actuator: Class 1 (Poor) Controller: Classical PID (D on PV), [Units=%Out/%Span], [Ctrl Int.=0.1 Sec] Controller: Emerson Delta V [Series, D on PV] Controller: Emerson Delta V [Series, D on PV] Click Accept button to allow calculation of Controller Settings Lambda: 30 Approx.Load Corner Period: 213.33 Sec V Wizard Controller Settings Calculate Settings Lambda Range Advanced Information Minimum Lambda Limit is 3.9525 Sec. Tuning Rule PI (P-Z Cancellation) Minimum Lambda Limit is 3.9525 Sec. Due to the process dynamics, the Aggressive Lambda Value is 23.532 Sec. Export Proportional 0.3915 Gain Minimum Lambda Value is 70.595 Sec. Help	Tuning Parameters 🛛 📉 🔀									
Tag: PC-2028 PV - R-28 Pressure Change Process: 1st Order Parameters: Kp=-1.77 %Span/%Out, Td=3.95 Sec, Tau1=23.5 Sec Actuator: Class 1 (Poor) Controller: Emerson Detta V [Series, D on PV] Classical PID (D on Pv), [Units=%Out/%Span], [Ctrl Int =0.1 Sec] Tuning Rule: Suggested: PI (P-Z Cancellatior Accept Click Accept button to allow calculation of Controller Settings Lambda: 30 Approx. Load Controller Settings Calculate Settings Lambda Range Adyanced Information Input Filter <3	Loop <u>O</u> verview									
Tuning Rule: Suggested: PI (P-Z Cancellation Accept Click Accept button to allow calculation of Controller Settings Lambda: 30 Approx. Load Corner Period: 213.33 Sec Wizard Controller Settings Calculate Settings Lambda Range Advanced Information Tuning Rule PI (P-Z Cancellation) Minimum Lambda Limit is 3.9525 Sec. Export Input Filter <3	Tag:PC-202B.PV - R-2B Pressure Pv: 0 to 2000 ATS, Op: 0 to 100 %OpenProcess:1 st OrderParameters:Kp=-1.77 %Span/%Out, Td=3.95 Sec, Tau1=23.5 SecActuator:Class 1 (Poor)Controller:Emerson Detta V [Series, D on PV] Classical PID (D on Pv), [Units=%Out/%Span], [Ctrl Int.=0.1 Sec]									
Tuning Rule PI (P-Z Cancellation) Input Filter <3	Tuning Rule: Suggested: PI (P-Z Cancellation Accept Click Accept button to allow calculation of Controller Settings Lambda: 30 Approx. Load Corner Period: 213.33 Sec Wizard Controller Settings Calculate Settings Advanced Information									
	Tuning Rule PI (P-Z Cancellation) Input Filter <3	E <u>x</u> port <u>H</u> elp								

Identifying Bumps

Response Bump Register Help A Pure Gain B 1st Order C 2nd Order, OverDamped D 2nd Order, UnderDamped E 2nd Order, Lead F 2nd Order, Lead with Overshoot G 2nd Order, Non-Minimum Phase H Integrator I Integrator, 1st Order Lag J Integrator, 1st Order Lead K Integrator, Non-Minimum Phase

Emerson's EnTech Toolkit

AIChE₁₀₀

Emerson's EnTech Toolkit

AIChE₁₀₀

Summary

- Eliminate variability at the source
- Tune the controllers to meet control objectives
 - Coordinate Tuning Speed Based on Operating Objectives
 - Attenuate Variability with Control/Equipment
- Utilize cascade and feed forward control
- Use a process analysis system to diagnose problems and tune loops

Process Control Foundation Courses

 Course 9030, PCE I – Process Dynamics, Control and Tuning Fundamentals - 4.5 days

 Course 9031, PCE II – Process Analysis and Minimizing Variability – 4.5 days

 Course 9032, MLT – Modern Loop Tuning – 4 days, can be taught onsite or at LBP office

Questions?

 \wedge

EMERSON. CONSIDER IT SOLVED;