How to Save Energy Through Enhanced Automation

AIChE Spring Meeting 2008 Douglas White Emerson Process Management

Speaker

Doug White

Principal Consultant and Vice President, APC Services

Advanced Applied Technologies

Process Systems and Solutions

Emerson Process Management

Many years experience designing, justifying, installing and commissioning advanced real time computer applications in the process industries.

Natural Gas Prices

Process Energy Usage

	Process Energy; MM BTU/ Ton	Value; 10% Energy Reduction; \$/ Ton (\$77 MMBTU)
Petroleum Refining	4.4	3.1
Integrated Pulp/Paper Mill	29.0	20.3
Cement Production	57.9	5.5
Chemicals		
Ethylene	7.1	5.0
Polyethylene	6.7	4.7
EDC	9.4	6.6
PVC CO	4.0	2.8
EO	6.2	4.3
EG	7.1	5.0
Ethylbenzene	2.9	2.1
Styrene	38.8	27.2

Present some case studies of the many ways that automation, advanced automation and asset management can save energy in process plants

- How is energy used in process plants?
- How can automation help save energy?
- How do we implement an energy reduction program?

General Process Site Energy Flow

"Average" Chemical Site Energy Flow

%-Equivalent BTU basis (Including losses) on total input

Integrated Pulping Paper Mill Energy Flow

%-Equivalent BTU basis (Including tosses) on total input

Oil Refinery Energy Flow

%-Equivalent BTU basis (Including losses) on total input

Reducing Plant Energy Costs

- Reduce Usage
 - Individual Equipment
 - Improve Efficiencies Boilers, Heaters, kilns
 - Maximize Useful Recovery Preheat
 - Minimize Losses
 - Cooling water
 - Minimize Motor Losses
 - Unit Savings
 - Optimize Process Unit Operations
 - Distillation/ Fractionation
 - Maximize Waste Heat Recovery
 - Minimize waste/ off spec
 - Site/ Multi Unit Savings
 - Minimize Steam Losses and Downgrading
 - Switch of steam drives for electric or vice versa
 - Seasonal effects
- Reduce Cost of Production and Purchase
 - Fuel Substitution
 - Generation Maximization
 - Boiler and Turbine Allocation
 - Electric Purchase Optimization

Automation and Advanced Automation are the keys to effective operation and minimum ongoing energy usage

- Fired Heaters
- Distillation/ Fractionation
- Central Power and Steam Production

How can Automation Reduce Energy Usage?

Variability – Potential Energy Savings Example

©2008 Emerson Process Management

Energy Savings Through Automation – Target Areas

Saving Energy – Automation Examples

Improved Loop/ Multi-loop **Control Performance**

Measurements Valve Performance

Component Heating Values

Fuel Gas Component Heating Value		
Component	Heat of Combustion kcal/ NM3 (gross)	
Hydrogen	3020	
Methane	9520	
Ethane	16820	
Propane	24320	
Butane	32010	

Control Fuel Flows By Mass Instead of Volume

Energy Savings From Improved Measurements – Hydrogen Plant

Objective: Control S/C ratio as close to 3.2 as possible but avoid going below

Disturbance: Fuel gas C1 77 – 85%; C2 6.8 – 15; N2, CO also fluctuate

Test: Normal orifice plus GC – max error 0.2; MMI – max error – 0.02

Benefits: Moving 0.2 ratio closer to limit worth 8 BTU/SCF of H2; 80 MMSCFD plant; \$7 MM BTU gas –

Energy Losses Through Bypassing

F ₁ /(F ₁ + F ₂)	Heat Loss Increase -%
0.14	3.2
0.25	6.8
0.4	14.3

Reference: Shinskey;

Energy Conservation Through Automation

Energy Savings – Equipment Level

- •Improved Multi-Loop Control – Advanced Control
- •Improved Performance Monitoring
- Improved Diagnostics

Steam System Control Issues

Steam System Diagnosis – Valves and Tuning

Flow controller to TGB has 5% deadband; induces limit cycle in pressure

> Correction: Fix TGB turbine governor/ steam valve

Tune controllers as system – not individually

Estimated value of increased flow to TGA - \$3000/ day

Fired Heater Controls

Combustion Control

Heater/ Boiler Combustion Control Savings

Typical Heater APC Package

Excuses For Not Improving Heater Controls

- Damper/ Air controls are not reliable
 - Answer: Add positioners to dampers, with feedback to control system; Analyze and fix controller problems
- Don't have online analyzer/ can't maintain them
 - Answer: Analyzers are cheaper and more reliable particularly mass flow meters. With higher fuel costs, they are well justified.

Distillation Controls

Typical Distillation Column

Distillation Column Control Savings

©2008 Emerson Process Management

Column Pressure Effect

Basis: Constant Separation Modeled With ChemSep Peng Robinson Equation of State

©2008 Emerson Process Management

Energy Savings – Site Wide

Site Energy/ Utility Management

- •Steam System Control
- •Fuel System Control

Energy Management and Optimization System

Plant Utility Systems – Many Opportunities for Savings

Optimizer Decisions

- Which boiler(s) should I run? What load?
- How much electricity should I produce? Buy? Sell? Is it economic to run the steam turbine?
- Which fuel should I buy? How much?
- Should I be using more steam drives or more electric drives?
- When will efficiency gain from maintenance balance the cost of shut down for this equipment?
- How does my actual compare with plan corrected to standard conditions?

Full Utility Optimization

Overall Energy Optimization Strategy

- Continuously Calculate Production Costs Over Load Range with Current Fuel Mix
- Incorporate Constraints on All Equipment
- Decisions Made Through Rule Based Logic
- Boiler Load Allocation
 - Distribute Steam Production Based on Cost and Constraints
- Turbine Load Allocation
 - Distribute Steam for Minimum Cost with Constraints
- Tie-Line Control
 - Control Electrical Purchase Based on Economic Decision and Constraints

Boiler Load Allocation

Load Allocation

Energy Savings via Site Energy Balance

Actual site value 125 psia steam reduction = \$4.08 per klb

Typical Energy Management System Benefits

1 – 3 % Overall site utility cost savings!

Example

Utilities Example – Biomass Power Boiler

- Paper mill
- 160k PPH Fluidized-bed Boiler
- Fuels:
 - Sludge
 - Wood waste
 - Tires
 - Fuel gas
- Incentives:
 - Maximize use of cheap fuels (Tires & Wood)
 - Burn all the sludge to minimize land fill
 - Maximize steam production

Solid Fuel Composition Control

Boiler Control

Boiler Process Control Issues

- Varying water in sludge
- Long delay & lag times (20 60 minutes) to change fuel composition
- Fuel composition time constants are a function of fuel bin level
- Solid fuel composition in fuel bin is unknown
- Bed temperature constraints (max & min)
- Multiple operators controlling same unit
- Different operating philosophy used by each shift

Solid Fuel Composition Control

Boiler Control

©2008 Emerson Process Management

©2008 Emerson Process Management

Power Boiler APC Benefits

	Difference in
	Hourly Costs
Power Boiler	<u>& (Savings)</u>
Natural Gas	\$2.22
Sludge Disposal	(\$23.04)
Sludge Ash Disposal	\$9.18
TDF	\$0.46
TDF Ash Disposal	\$0.00
Waste Wood	\$26.91
W Wood Ash Disposal	\$0.77
Total	\$16.50
Package Boilers	
Displaced Natural Gas	(\$98.42)
Net Savings, \$/Hr	(\$81.92)

Project Justified:

- Replacement of required pneumatic instruments
- DCS Hardware / Software
- APC Tools
- Turnkey Engineering Services

Issues in Evaluating Plant Energy Usage

- Unit energy usage depends on production rate
- Unit energy usage variance dependent on production rate
- Need to correct to standard unit conditions

Unit Energy Usage

Energy Usage - Example

Unit Energy Usage

©2008 Emerson Process Management

Unit Energy Usage - Example

Excuses for Doing Nothing

- Not enough manpower Too busy doing other things
- Our plant is special analysis based on other sites doesn't apply
- We run our plant well already, there won't be any big savings found
- Ostrich (If we find something obvious, management will ask why we didn't find it before)

- Energy is the largest controllable cost in process operation – it's efficient production and use are keys to plant profitability
- Automation and Advanced Automation are keys to effective use and management of energy in the plant
- Implementation of a program to save energy requires a disciplined approach to evaluation and analysis

Questions? Comments?

doug.white@emersonprocess.com

More material on subject: http://www.emersonprocess.com/solutions/services/aat