

Estimating Benefits from Process Automation

John Dolenc, P.E. Principal Consulting Engineer Emerson Process Management Process Systems & Solutions Advanced Applied Technologies

Introduction

- Project Justification Activities
- Where to Look for Benefits
- Techniques for Estimating Improvement Quantities

Project Justification

The justification for process automation modernization is one of the most difficult steps to complete during the planning process

- Create the business case
- Obtain operational data
- Develop the benefits
- Estimate degree of improvement
- Establish the financial gain

Where to Find Benefits

Think of the Plant as a Financial Asset

- Want to Increase Return on Invested Capital
- (ROIC) = Profit / Invested Capital
- Function of:
 - Profit
 - Revenue
 - Costs
 - Capital
 - Fixed
 - Working

- Increased Production
 - Increased
 - Equipment Capacity

– Reduced

- Batch Cycle Time
- Grade Transition Time
- Product Re-blends
- Unscheduled Downtime
- Scheduled Shutdown Duration / Frequency

Increase Profit

- Increase Price / Sales
 - Increase Yield of Most Valuable Product(s)
 - Improve Product Quality
 - Meet Specifications
 - Consistency
 - Meet Delivery Demands
 - Ability to Increase Price
 - Ability to Increase Market Share

Increase Profit

- Reduce Costs
 - Feedstocks
 - Energy and Utilities
 - Direct and Indirect Labor
 - Off-Spec Material
 - Abnormal Events
 - Demurrage
 - Maintenance

Reduce Capital

- Fixed Capital
 - Fixed Assets
 - Project Capital
 - Commissioning and Start-up Costs
- Working Capital
 - Feed / Intermediate / Product Inventory
 - Warehouse / Spares
 - Financial Working Capital

Benefit Estimation Methods

- Best Operator Method
- Data Reduction Method
- Percent Limit Violation

Develop a Base Case

- Identify and retrieve historical data
 - Key Performance Indicators
 - Important Manipulated Variables
 - Constraint Variables
 - Material and Energy Balance Parameters
- Obtain data while plant was running at normal operating conditions
- Data sampling frequency needs to match type of data collected

Best Operator Method

- Compare Historical Operational Information
 - Compare operating data between the historical best versus average results
 - Compare normal operating results versus when engineers are running
 - Compare normal versus those obtained during continuous monitoring demanded by a process optimization or alteration
 - Comparison between two similar plants except for one having automation and the other manual control
- Conservative Method Since does not Account for Improvements

∆Value =

(|Average Variable – Best Operator Variable |)

X Average Rate

Raw Data

Data without Outliers

Cycle Tim	e (Minutes)	Cycle Time (Minute	es)
75	75	75	
150	90		
45	105	45	
75	75	75	
30	90		
75	90	75	
135	45	135	
60	75	60	
45	75	45	
60	90	60	
60	90	60	
90	45	90	
60	60	60	
45	45	45	

Average	72 Minutes
Best	45 Minutes

Delta 27 Minutes

Capacity Gain = 27 min x # of Current Batches

- Collect raw data over appropriate time interval
 - Hourly averages/week, shift averages/month, daily averages/year
 - Remove startup/shutdown and upset data
- Normalize the data to a production rate
- Plot in a Histogram
- Subtract the values at the median and the 15% points
- Difference indicates potential economic benefit

Data Reduction Method

Lbs Steam / Lbs Product

Data Reduction Method Example

Lb Steam/ Lb Product	Frequency	Lb Steam/ Lb Product	Frequency
0.6	1	1.2	50
0.65	2	1.25	47
0.7	3	1.3	43
0.75	5	1.35	39
0.8	11	1.4	36
0.85	12	1.45	23
0.9	22	1.5	19
0.95	30	1.55	10
1	27	1.6	8
1.05	40	1.65	7
1.1	41	1.7	3
1.15	44	1.75	1

Data Reduction Method Example

Midpoint1.2Low End0.6High End1.75Range1.1515% Point0.8Improvement:1.2 - 0.8 = 0.4

Limit Violation Methods

Same Percent Limit Violation

Calculate the Average

Calculate the Standard Deviation

 $Z = (L - Avg_0)/SD_0$

Standard Normal Distribution Function		
Z F(Z)		
0.00	0.5000	
1.00	0.8413	
1.50	0.9332	
1.65	0.9505	
2.00	0.9772	
2.05	0.9797	
2.33	0.9901	

Same Percent Limit Violation

Same Percent Limit Violation

Calculate the Average
Calculate the Standard Deviation
$Z = (L - Avg_o)/SD_o$
$Z = (L - Avg_N)/SD_N$
$(L - Avg_N)/SD_N = (L - Avg_O)/SD_O$
$Avg_N = L - SD_N/SD_O \times (L - Avg_O)$

Standard Normal Distribution Function		
Ζ	F(Z)	
0.00	0.5000	
1.00	0.8413	
1.50	0.9332	
1.65	0.9505	
2.00	0.9772	
2.05	0.9797	
2.33 0.9901		

Same Percent Limit Violation Example

Lbs Steam/hr	Frequency	Lbs Steam/hr	Frequency
1460	1	2420	28
1540	2	2500	27
1620	3	2580	29
1700	5	2660	25
1780	11	2740	23
1860	12	2820	18
1940	15	2900	14
2020	18	2980	7
2100	19	3060	8
2180	23	3140	7
2260	25	3220	3
2340	26	3300	1

Same Percent Limit Violation Example

Existing Average:	2411 Lbs/hour
Existing Standard Deviation:	372 Lbs/hour
Limit:	1650 Lbs/hour
Z=(Limit-Average)/Std Dev :	2.045
Limit Violation:	~2%

$Avg_{N} = L - SD_{N}/SD_{O} (L - Avg_{O})$

New Average:2030 Lbs/hrTheoretically can reduce average steam usage by 381 Lbs/hr

From Table: @ F(Z) = .95; Z =	: 1.65
$Z_{0} = Z_{N} = 1.65$	
(L -Avg _o)/SD _o = 1.65	
(L -Avg _N)/SD _N = 1.65	
Δ Avg = 1.65(SD _o - SD _N)	

Standard Normal

Distribution

Factor

Ζ

0.00

1.00

1.50

1.65

2.00

2.05

2.33

F(Z)

0.5000

0.8413

0.9332

0.9505

0.9772

0.9797

0.9901

Same Percent Violation of 5% Limit

Same Percent Violation of 5% Limit Example

Same Percent Violation of 5% Limit Example

Existing Average: Existing Standard Deviation: 342.5 deg F 2.8 deg F

Δ Avg = 1.65(SD_o - SD_N)

Increase in Average Temperature: New Average Temperature: 3.1 deg F 345.6 deg F

Improved Control – Run Closer to Limits

Before Automation After Automation

- Justification is difficult, but necessary to receive approval for automation projects
- Historical Data Collection is vital
- Build a base case
- Some "Prediction" of results is necessary

Where To Get More Information

- "Estimating Benefits from Advanced Control" by P.L. Latour, J.H. Sharpe, M.C. Delaney (ISA)
- "Estimating Savings from Upgrading Process Control" by Herman Bozenhardt and Martin Dybeck (Chemical Engineering Magazine, 2/3/1986)
- "Calculating ROI for Automation Projects" by Doug White (Emerson Process Management Website, Advanced Automation Services Whitepaper)

Estimating Benefits from Process Automation

Questions ?

