Carbon Capture, Utilization and Storage Podcast

by , , | Jun 8, 2022 | Sustainability, Sustainable Energy

Jim Cahill

Chief Blogger, Social Marketing Leader

One of the important methods in decarbonization is carbon capture, storage and utilization (CCUS). It’s a way to capture the byproduct of combustion or other processes and avoid releasing CO2 into the atmosphere.

Asia Pacific Sustainability & Decarbonization Podcast Series: Carbon Capture, Utilization & StorageIn our continuing Asia Pacific Sustainability & Decarbonization podcast series, Emerson’s Willie Tan and Amy Loi join me to discuss the trends, opportunities, and solutions available to continue to grow the role of CCUS in the region.

Visit the Sustainability & Decarbonization section on Emerson.com or connect with a local expert in your country in the Asia-Pacific region.

Transcript

Jim: Hi everyone! This is Jim Cahill with another Emerson Automation Experts podcast in our continuing Asia-Pacific Sustainability & Decarbonization podcast series. Today we’re going to explore carbon capture, utilization, and storage technologies with Emerson’s Willie Tan and Amy Loi. We’ll look at some technologies to optimize the carbon capture process. Welcome, Willie and Amy!

Willie & Amy: Thanks, Jim

Jim: It’s great to have you both! Willie let’s start with you. Can you share a bit about your current role and some background on your experience with our listeners?

Willie: I’m Willie Tan. I’m based in Singapore. I joined Emerson in 2012. I have been working under the Flow Controls business division and supporting Fisher control valve products. I specialize in hydrocarbon industries covering the O&G, LNG, Refinery, and Petrochemical industries. I’m involved in business development and technical support for sustainability and renewable energies, which are actively happening in hydrocarbon industries. Some examples include renewable diesel, sustainable aviation fuel (SAF), hydrogen, and Carbon Capture, Utilization and Storage (CCUS) which is our topic today.

Jim: That’s great… thanks. Amy, can you tell us about yourself?

Amy: My name is Amy Loi. I am the Sales & Marketing Director for Analytical Products. I have been with Emerson for 20 years in various technical, sales, business development, and marketing roles. With the recent focus in Sustainability & Decarbonization, I have been tasked to lead the Brownfield Sustainability, which covers Emission Control, Energy Efficiency, and Carbon Capture for Asia Pacific, and participation in other sustainability and renewable energies segments such as Hydrogen, biofuels, and batteries. Our primary focus within Brownfield sustainability is to create awareness of Emerson’s solution and partner with our customers towards their decarbonization journey.

Jim: Thank you, Amy. So let’s dive into Carbon Capture, Utilization & Storage. Since that’s a mouthful to say, we’ll shorten it to CCUS during this podcast. Willie, can you define and describe CCUS for us?

Willie: CCUS is a process to capture carbon dioxide before it is released into the atmosphere. The CCUS can capture up to 90% of carbon dioxide emissions released from burning fossil fuels during electricity generation and industrial processes such as steel or cement production. Once the carbon dioxide is captured, it can be compressed into a liquid state or left as gas before being transported by pipeline or ship to a storage site. The carbon dioxide can be stored permanently deep underground. Alternatively, carbon dioxide can be utilized for other industrial purposes instead of storage. For example, carbon dioxide can be used for enhanced oil recovery (EOR) by injecting it into the oil and gas reservoirs. Carbon dioxide can be used in chemical industries by feeding it to algae that are then harvested and processed into biofuel. Carbon Dioxide can also be used as a chemical feedstock in Petrochemical or Chemical processes.

Jim: That’s great. Amy, what’s CCUS’s role in net-zero emission, and how does it help with carbon dioxide reduction on a large scale?

Amy: Time is running out to achieve the zero-emission target by 2050. CCUS could be a game-changer. The CCUS can be added to various industrial facilities identified by identifying the CO2 emission sources. CCUS enables a large-scale reduction in CO2 emission to the atmosphere. The Carbon Capture facility can be retrofitted into coal-fired power plants, cement, iron, steel, and chemical sectors where CO2 emission occurs due to the nature of industrial processes and high-temperature heat requirements. The CCUS can contribute 16% CO2 reduction in the power generation sector. It can reduce up to 90% CO2 in fuel transformation sectors such as refinery, petrochemical, and chemical processing plants. CCUS is one of the most mature and cost-effective alternatives for driving net-zero emissions in industrial facilities. According to IEA’s Sustainable Development Scenario (SDS), 40Mt of CO2 was captured by CCUS in 2020, and it is predicted up to 5.6 gigatons of CO2 will be captured in 2050. We can foresee tremendous growth in CCUS technology in the next 20 to 30 years.

Jim: So, what’s the current global status of CCUS, and how has it progressed so far?

Willie: The CCUS annual capacity was recorded at 140 Mtpd (metric tons per day) in 2010. This capacity covers operating CCUS facilities, projects in construction, and development plans. Although progressive growth in the CCUS facilities capacity started in 2011, the total annual capacity was reduced in the following years. It is because both public and private sectors focused on the short-term recovery after the global financial crisis in that period. Nevertheless, we can see a strong recovery in CCUS capacity after 2017. The CCUS capacity has risen above 110 Mtpa (metric tons per day). It’s strong growth in CCUS capacity. Net-zero greenhouse gas emissions (GHG) are widely promoted and recognized across countries, especially during the COVID-19 global pandemic. It is encouraging to see this momentum across countries to explore sustainable alternatives in conjunction with the Paris Agreement, which sets out a global framework to avoid dangerous climate change by limiting global warming to well below 2 degrees Celsius.

Amy: We also observe a shift in the deployment strategies, from large, stand-alone CCUS facilities to the development of industrial “hubs” with shared CO2 transport and storage infrastructure. This approach can improve the economics of CCUS by reducing unit costs through economies of scale and reducing commercial risk and financing costs by separating the capture, transport, and storage components of the CCUS chain.

Developing CCUS hubs with shared infrastructure can also make it feasible to capture CO2 at smaller industrial facilities, for which dedicated CO2 transport and storage infrastructure may be impractical and uneconomic. It can allow continued operation of existing infrastructure and supply chains in industrial regions, maintaining employment and making it easier to attract new investment, including in energy-intensive industries or low-carbon hydrogen production, while respecting emissions reduction targets.

Jim: The hub approach does sound like a good path to more efficient CCUS operations. Amy, what will the growth of CCUS do to create additional economic impacts?

Amy: CCUS helps cost-effectively convert high emissions-intensity industries to near-zero emission industries as one climate mitigating technology. The growth in CCUS project and development plans creates branches of job opportunities across engineering, design, construction, commissioning, and process, maintenance, and operation team in running the CCUS facilities. The CCUS brings encouraging and impactful growth to global economics.

Jim: It’s good to hear about these growth opportunities. Willie, can you share which countries in the Asia Pacific region are actively involved in CCUS development and some of their project execution plans?

Willie: Based on the current CCUS project trends, there will be 5 new commercial CCUS facilities in the Asia Pacific region in China, Australia, Malaysia, and Indonesia. China announced its support for CCUS by launching an emission trading system that covers 4,000 Mtpa (metric tons per day) from more than 2,000 power plants. Australia had included CCUS in the emission reduction fund. It is also exciting to see Southeast Asia countries starting in CCUS project investment. Petronas in Malaysia is working on the investment approval for their Kasawari CCUS project in Sarawak. Repsol, another natural gas processing plant in South Sumatra, Indonesia, had announced a 2.5 Mtpa (metric tons per day) CCUS hub project. Many CCUS projects were announced in Australia, such as Santos Moomba and Bayu Gas Field. In India, IOCL planned for a CCUS facility in their Koyali refinery, and NTPC has 2 projects in their plan.

Jim: Amy, what role can Emerson play in CCUS technology?

Amy: Emerson, as one of the largest companies in automation solutions, plays a role as a solution provider and close partner with global process licensors and EPC who are specialized in CCUS technology.

Emerson has decades of experience engineering, operating, and optimizing industrial facilities, providing the foundation for its expertise in CCUS. Emerson’s automation technology has the flexibility to quickly and efficiently adapt as carbon-capture technology evolves, ensuring our experts can help customers navigate regulatory uncertainty as they plan and execute CCUS projects. Our experts understand the unique challenges posed by CO2 transportation and storage and bring integrated geoscience and engineering capabilities needed to successfully plan and execute carbon storage projects worldwide. Ensuring carbon is permanently sealed away is critical to achieving the operational and environmental goals of a CCUS project. Emerson leverages its highly advanced technologies in well integrity management, effective closure techniques, and ongoing monitoring services to help our customers achieve these objectives. Emerson’s gas compression technology and advanced compression and pumping solutions address the most demanding industrial decarbonization projects. Our vast experience and expertise with liquefied natural gas (LNG) operations can be applied to CO2 liquefaction.

Jim: Willie, can you share some specific Emerson products which support CCUS?

Willie: There are many control valve applications at the CO2 capture, transport via carrier or pipeline, storage such as subsea and underground. For example, Emerson offers a Fisher control valve for CO2 capture solvent extraction technology, licensed by Japan Mitsubishi Heavy Industry (MHI), Shell, Linde, and so on. Also, Emerson’s Fisher reliable control valve solution can meet high-cycle requirements at the CO2 adsorption-desorption purification unit. Besides, the CO2 will go through the compressor station for pipeline transport. Fisher provides high performance and reliable compressor anti-surge valve solution. It is a critical valve to protect millions of dollars of the gas compressor as it is one of the important vital assets. The compressor anti-surge valve must react fast and accurately to comply with the required performance criteria.

Amy: Another example of solutions Emerson can provide in the transportation and injection into well in the CCUS project is to provide the most reliable mass flow measurement at the supercritical condition of CO2 using Coriolis technology. At the point of injection of CO2 into the reservoir, the pressure of CO2 is typically very high. At this point, a volumetric flow measurement will be difficult due to the changes in the CO2 phase and density. Thus, the direct mass measurement is the best option at this critical measuring point. Corrosion and Erosion monitoring will ensure pipeline and process unit integrity. Any presence of Moisture in the CO2 will cause the formation of Carbonic Acid and may attack the pipeline or process unit. Online monitoring of pipeline and process unit corrosion is important to avoid leakages and spillage. Depending on the location of the installation, the corrosion monitoring solution can be wireless, which means wirelessly transmitting the data to the control system for monitoring purposes instead of laying long length of cable or manually getting operators to the site to measure the thickness of pipes to ensure there is no corrosion happening in the pipeline. Concentration or composition measurement of CO2 purity & impurities at the Carbon Capture Units/Process and further down the value chain is another important measurement point. The analyzers will provide near linear-lived trending to the operators. This means visibility into the process. Operators will be able to take quick actions if the impurities level has exceeded the set points. As every process is different, depending on the Carbon source, whether it comes from Natural Gas, Post combustions process, or Direct Air Capture, the species of impurities measured can be very different.

Jim: Can you tell our listeners about a few examples demonstrating our partnership with customers in their CCUS projects?

Willie: Emerson had supported an Australia O&G customer to capture the CO2 from the gas plant and store the CO2 underground on the Island. Fisher high-pressure rating control valves were supplied for that project. Besides, Emerson’s Fisher control valves are used at a Canadian company. They can remove 1 million tons of carbon dioxide from the atmosphere annually. The current project is a pilot plant. The full-scale plant could be 10 times larger in size and scope.

Amy: I also have another example of sharing. An Indian fertilizer company has been buying its CO2 from a gas supplier. Due to the supplier’s unreliable supply of CO2, the owner has decided to generate their CO2 gas by installing a post-combustion Carbon Capture unit, utilizing the Purity CO2 analyzer, flow meters, and valves from Emerson. This project started in 2016 and was fully operational in 2017. Customers’ experience is so good that we have repeat orders from this customer. Recently, another O&G customer in Australia has chosen Emerson as the supplier for their CO2 metering /custody transfer skids. Consist of Coriolis for CO2 measurement at high pressure, supercritical phase, CO2 purity, and impurities (CH4 and H2O) measurements

Jim: Can we offer live or remote demonstrations to manufacturers & producers who are interested in reviewing the products’ capabilities?

Willie: Yes, we can. We have a compressor anti-surge valve demo at Emerson Asia Pacific Solution Center in Singapore. We have a compressor controller to simulate the compressor surge event and demonstrate how the anti-surge valve responds online. Besides, we can run a series of anti-surge valve typical requirements in both fast speed and high accuracy control. Also, we have Additive Manufacturing Center in Singapore, which is open for customer visits. Additive Manufacturing expands our thinking beyond the limits of standard manufacturing processes. We’re now using this Additive Manufacturing technology, also called 3D printing, to produce high-tier material constructions and unique valve trim designs for our valuable customers.

Jim: Thank you both for sharing everything happening in CCUS in the Asia-Pacific region. Let’s close by telling our listeners where they can go to learn more about Emerson’s solutions in CCUS.

Amy: Our listeners can visit Emerson’s sustainability website to learn more about our strategies, technologies, & solutions. You may also contact your nearest Emerson office and speak to the Emerson Sustainability & decarbonization representative. In addition, we have lined up a series of webinars with different topics related to Sustainability & Decarbonizations. One of them on Carbon Capture is on July 28, on Minimize Safety Risks and Improve Reliability in Critical Applications of Carbon Capture Units. For those interested, you may sign up to learn more details.

Jim: Thank you, Amy and Willie, for joining me today!

-End of transcript-

Popular Posts

Comments

Related Posts

Subscribe for Updates

Follow Us

We invite you to follow us on Facebook, LinkedIn, Twitter and YouTube to keep up to date on all the latest news, events and innovations to help you take on and solve your toughest challenges.

Want to re-purpose, reuse or translate content?

Please do, Just link back to the post and send us a quick note so we can share your work. Thanks!

Our Global Community

Emerson Exchange 365

The opinions expressed here are the personal opinions of the authors. Content published here is not read or approved by Emerson before it is posted and does not necessarily represent the views and opinions of Emerson.