Improving Hydrogen Value Chain Performance

by , | May 25, 2022 | Flow, Sustainability, Sustainable Energy

Jim Cahill

Chief Blogger, Social Marketing Leader

At a recent Green Innovation Day event, Emerson’s Brandon Bromberek presented Overcoming Measurement Challenges Across the Hydrogen Value Chain. I highlight some of the key points he shared.

Brandon opened by explaining how decarbonized hydrogen can support a growing energy demand while reducing the global CO2 footprint. Hydrogen enables manufacturing and production sectors to decarbonize where it is otherwise difficult to reduce emissions meaningfully. Technology has advanced to allow hydrogen to be produced, stored, moved, and used more safely and efficiently. Hydrogen storage can stabilize the variable output from renewable energy sources to better balance supply with demand.

Today, hydrogen production mainly comes from the steam methane reforming (SMR) process, where hydrogen is produced, and CO2 is a byproduct. It’s currently the most economical way to produce hydrogen because low-carbon energy sources are still costly. Much work is being done to couple carbon capture, utilization, and storage (CCUS) technologies with the SMR process.

Measurement technologies play an essential role in driving greater efficiencies across the hydrogen value chain.
Automation for the hydrogen value chain

For the traditional SMR process, Micro Motion Coriolis flow meters help overcome the operational challenge of changing feedstock quality and its effect on controlling the steam to carbon ratio. This is because this flow meter is unaffected by changes in composition or physical properties. It measures SMR feed on a mass basis to enable the controller to correct the amount of steam to the reformer. Better measurement and control help extend catalyst life, lower energy costs, and reduce safety risks.

Another example Brandon shared was continuous gas analysis in the SMR process. By continuously monitoring the composition of the methane—feedstock, intermediate, and final products—Rosemount continuous gas analyzers can quickly identify inefficiencies and enable optimization.

Blending and injection processes must be carefully managed to mitigate safety risks. Rosemount flame and gas detectors help implement an automated plan to detect, distinguish, and defend against gas releases and fires.

Across the value chain, hydrogen may be in a gas or liquid state and pure or blended to facilitate transportation. Unlike volumetric flow measurement technologies, Micro Motion Coriolis mass flow meters can accurately measure the hydrogen blend up to 100% pure hydrogen. This eliminates the need for flowing density measurements and reduces maintenance and additional meters required by other flow measurement solutions.

Finally, Brandon addressed the challenge of accurately and safely dispensing high-pressure hydrogen using Micro Motion HPC015 Coriolis flow meters. These meters accurately and safely measure high-pressure hydrogen while reducing installation complexity. The accuracy and repeatability meet the stringent requirements for custody transfer with 0.5% mass flow accuracy at operating conditions. Compared with other flow measurement technologies, no flow conditioning or straight pipe length minimums are required. And Smart Meter Verification (SMV) technology ensures measurement integrity and extends calibration intervals.

Visit the Sustainability and Automation: Drivers Towards a Greener Future section on Emerson.com for more ways to drive more sustainable operations.

Popular Posts

Comments

Related Posts

Subscribe for Updates

Follow Us

We invite you to follow us on Facebook, LinkedIn, Twitter and YouTube to keep up to date on all the latest news, events and innovations to help you take on and solve your toughest challenges.

Want to re-purpose, reuse or translate content?

Please do, Just link back to the post and send us a quick note so we can share your work. Thanks!

Our Global Community

Emerson Exchange 365

The opinions expressed here are the personal opinions of the authors. Content published here is not read or approved by Emerson before it is posted and does not necessarily represent the views and opinions of Emerson.